Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Infect Dis Clin North Am ; 35(3): 789-802, 2021 09.
Article in English | MEDLINE | ID: covidwho-1340083

ABSTRACT

A great clinical microbiology laboratory supporting a great infection prevention program requires focusing on the following services: rapid and accurate identification of pathogens associated with health care-associated infections; asymptomatic surveillance for health care-acquired pathogens before infections arise; routine use of broad and flexible antimicrobial susceptibility testing to direct optimal therapy; implementation of epidemiologic tracking tools to identify outbreaks; development of clear result communication with interpretative comments for clinicians. These goals are best realized in a collaborative relationship with the infection prevention program so that both can benefit from the shared priorities of providing the best patient care.


Subject(s)
Bacterial Infections/prevention & control , Cross Infection/prevention & control , Disease Outbreaks/prevention & control , Infection Control/methods , Laboratories, Hospital , Bacterial Infections/transmission , Humans , Laboratories/organization & administration
2.
PLoS One ; 16(6): e0250854, 2021.
Article in English | MEDLINE | ID: covidwho-1388910

ABSTRACT

The use of personal protective equipment (PPE) has been considered the most effective way to avoid the contamination of healthcare workers by different microorganisms, including SARS-CoV-2. A spray disinfection technology (chamber) was developed, and its efficacy in instant decontamination of previously contaminated surfaces was evaluated in two exposure times. Seven test microorganisms were prepared and inoculated on the surface of seven types of PPE (respirator mask, face shield, shoe, glove, cap, safety glasses and lab coat). The tests were performed on previously contaminated PPE using a manikin with a motion device for exposure to the chamber with biocidal agent (sodium hypochlorite) for 10 and 30s. In 96.93% of the experimental conditions analyzed, the percentage reduction was >99% (the number of viable cells found on the surface ranged from 4.3x106 to <10 CFU/mL). The samples of E. faecalis collected from the glove showed the lowest percentages reduction, with 86.000 and 86.500% for exposure times of 10 and 30 s, respectively. The log10 reduction values varied between 0.85 log10 (E. faecalis at 30 s in glove surface) and 9.69 log10 (E. coli at 10 and 30 s in lab coat surface). In general, E. coli, S. aureus, C. freundii, P. mirabilis, C. albicans and C. parapsilosis showed susceptibility to the biocidal agent under the tested conditions, with >99% reduction after 10 and 30s, while E. faecalis and P. aeruginosa showed a lower susceptibility. The 30s exposure time was more effective for the inactivation of the tested microorganisms. The results show that the spray disinfection technology has the potential for instant decontamination of PPE, which can contribute to an additional barrier for infection control of healthcare workers in the hospital environment.


Subject(s)
COVID-19/prevention & control , Decontamination , Infection Control , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Protective Clothing , Respiratory Protective Devices , SARS-CoV-2 , Bacteria , Bacterial Infections/epidemiology , Bacterial Infections/prevention & control , Bacterial Infections/transmission , COVID-19/epidemiology , COVID-19/transmission , Decontamination/instrumentation , Decontamination/methods , Humans
3.
Biochim Biophys Acta Mol Basis Dis ; 1867(12): 166264, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1385051

ABSTRACT

The molecular evolution of life on earth along with changing environmental, conditions has rendered mankind susceptible to endemic and pandemic emerging infectious diseases. The effects of certain systemic viral and bacterial infections on morbidity and mortality are considered as examples of recent emerging infections. Here we will focus on three examples of infections that are important in pregnancy and early childhood: SARS-CoV-2 virus, Zika virus, and Mycoplasma species. The basic structural characteristics of these infectious agents will be examined, along with their general pathogenic mechanisms. Coronavirus infections, such as caused by the SARS-CoV-2 virus, likely evolved from zoonotic bat viruses to infect humans and cause a pandemic that has been the biggest challenge for humanity since the Spanish Flu pandemic of the early 20th century. In contrast, Zika Virus infections represent an expanding infectious threat in the context of global climate change. The relationship of these infections to pregnancy, the vertical transmission and neurological sequels make these viruses highly relevant to the topics of this special issue. Finally, mycoplasmal infections have been present before mankind evolved, but they were rarely identified as human pathogens until recently, and they are now recognized as important coinfections that are able to modify the course and prognosis of various infectious diseases and other chronic illnesses. The infectious processes caused by these intracellular microorganisms are examined as well as some general aspects of their pathogeneses, clinical presentations, and diagnoses. We will finally consider examples of treatments that have been used to reduce morbidity and mortality of these infections and discuss briefly the current status of vaccines, in particular, against the SARS-CoV-2 virus. It is important to understand some of the basic features of these emerging infectious diseases and the pathogens involved in order to better appreciate the contributions of this special issue on how infectious diseases can affect human pregnancy, fetuses and neonates.


Subject(s)
Bacterial Infections/prevention & control , Communicable Diseases/transmission , Virus Diseases/prevention & control , Bacterial Infections/history , Bacterial Infections/transmission , COVID-19/metabolism , COVID-19/prevention & control , Communicable Diseases/virology , Female , History, 19th Century , History, 20th Century , History, 21st Century , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical/history , Mycoplasma/pathogenicity , Mycoplasma Infections/metabolism , Mycoplasma Infections/prevention & control , Pregnancy , Pregnant Women , SARS-CoV-2/pathogenicity , Virus Diseases/history , Virus Diseases/transmission , Zika Virus/pathogenicity , Zika Virus Infection/metabolism , Zika Virus Infection/prevention & control
4.
Lancet Digit Health ; 3(6): e360-e370, 2021 06.
Article in English | MEDLINE | ID: covidwho-1240696

ABSTRACT

BACKGROUND: Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 pandemic. METHODS: In this prospective analysis of surveillance data, laboratories in 26 countries and territories across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative. Numbers of weekly cases in 2020 were compared with corresponding data for 2018 and 2019. Data for invasive disease due to Streptococcus agalactiae, a non-respiratory pathogen, were collected from nine laboratories for comparison. The stringency of COVID-19 containment measures was quantified using the Oxford COVID-19 Government Response Tracker. Changes in population movements were assessed using Google COVID-19 Community Mobility Reports. Interrupted time-series modelling quantified changes in the incidence of invasive disease due to S pneumoniae, H influenzae, and N meningitidis in 2020 relative to when containment measures were imposed. FINDINGS: 27 laboratories from 26 countries and territories submitted data to the IRIS Initiative for S pneumoniae (62 837 total cases), 24 laboratories from 24 countries submitted data for H influenzae (7796 total cases), and 21 laboratories from 21 countries submitted data for N meningitidis (5877 total cases). All countries and territories had experienced a significant and sustained reduction in invasive diseases due to S pneumoniae, H influenzae, and N meningitidis in early 2020 (Jan 1 to May 31, 2020), coinciding with the introduction of COVID-19 containment measures in each country. By contrast, no significant changes in the incidence of invasive S agalactiae infections were observed. Similar trends were observed across most countries and territories despite differing stringency in COVID-19 control policies. The incidence of reported S pneumoniae infections decreased by 68% at 4 weeks (incidence rate ratio 0·32 [95% CI 0·27-0·37]) and 82% at 8 weeks (0·18 [0·14-0·23]) following the week in which significant changes in population movements were recorded. INTERPRETATION: The introduction of COVID-19 containment policies and public information campaigns likely reduced transmission of S pneumoniae, H influenzae, and N meningitidis, leading to a significant reduction in life-threatening invasive diseases in many countries worldwide. FUNDING: Wellcome Trust (UK), Robert Koch Institute (Germany), Federal Ministry of Health (Germany), Pfizer, Merck, Health Protection Surveillance Centre (Ireland), SpID-Net project (Ireland), European Centre for Disease Prevention and Control (European Union), Horizon 2020 (European Commission), Ministry of Health (Poland), National Programme of Antibiotic Protection (Poland), Ministry of Science and Higher Education (Poland), Agencia de Salut Pública de Catalunya (Spain), Sant Joan de Deu Foundation (Spain), Knut and Alice Wallenberg Foundation (Sweden), Swedish Research Council (Sweden), Region Stockholm (Sweden), Federal Office of Public Health of Switzerland (Switzerland), and French Public Health Agency (France).


Subject(s)
Bacterial Infections/epidemiology , COVID-19 , Respiratory Tract Infections/epidemiology , Bacterial Infections/transmission , COVID-19/prevention & control , Haemophilus influenzae , Humans , Incidence , Interrupted Time Series Analysis , Neisseria meningitidis , Population Surveillance , Prospective Studies , Public Health Practice , Streptococcus agalactiae , Streptococcus pneumoniae
6.
J Acoust Soc Am ; 148(4): 2322, 2020 10.
Article in English | MEDLINE | ID: covidwho-901221

ABSTRACT

Respiratory droplets emitted during speech can transmit oral bacteria and infectious viruses to others, including COVID-19. Loud speech can generate significantly higher numbers of potentially infectious respiratory droplets. This study assessed the effect of speech volume on respiratory emission of oral bacteria as an indicator of potential pathogen transmission risk. Loud speech (average 83 dBA, peak 94 dBA) caused significantly higher emission of oral bacteria (p = 0.004 compared to no speech) within 1 ft from the speaker. N99 respirators and simple cloth masks both significantly reduced emission of oral bacteria. This study demonstrates that loud speech without face coverings increases emission of respiratory droplets that carry oral bacteria and may also carry other pathogens such as COVID-19.


Subject(s)
Air Microbiology , Bacteria/pathogenicity , Bacterial Infections/transmission , Inhalation Exposure , Mouth/microbiology , Respiration , Speech Acoustics , Aerosols , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Humans , Inhalation Exposure/prevention & control , Masks , Personal Protective Equipment , Respiratory Protective Devices
7.
PLoS One ; 15(10): e0238186, 2020.
Article in English | MEDLINE | ID: covidwho-874156

ABSTRACT

Mathematical models are powerful tools to investigate, simulate, and evaluate potential interventions for infectious diseases dynamics. Much effort has focused on the Susceptible-Infected-Recovered (SIR)-type compartment models. These models consider host populations and measure change of each compartment. In this study, we propose an alternative patch dynamic modeling framework from pathogens' perspective. Each patch, the basic module of this modeling framework, has four standard mechanisms of pathogen population size change: birth (replication), death, inflow, and outflow. This framework naturally distinguishes between-host transmission process (inflow and outflow) and within-host infection process (replication) during the entire transmission-infection cycle. We demonstrate that the SIR-type model is actually a special cross-sectional and discretized case of our patch dynamics model in pathogens' viewpoint. In addition, this patch dynamics modeling framework is also an agent-based model from hosts' perspective by incorporating individual host's specific traits. We provide an operational standard to formulate this modular-designed patch dynamics model. Model parameterization is feasible with a wide range of sources, including genomics data, surveillance data, electronic health record, and from other emerging technologies such as multiomics. We then provide two proof-of-concept case studies to tackle some of the existing challenges of SIR-type models: sexually transmitted disease and healthcare acquired infections. This patch dynamics modeling framework not only provides theoretical explanations to known phenomena, but also generates novel insights of disease dynamics from a more holistic viewpoint. It is also able to simulate and handle more complicated scenarios across biological scales such as the current COVID-19 pandemic.


Subject(s)
Communicable Diseases/epidemiology , Disease Transmission, Infectious/statistics & numerical data , Models, Theoretical , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/transmission , COVID-19 , Communicable Diseases/transmission , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Pneumonia, Viral/virology
8.
Ann Ist Super Sanita ; 56(3): 359-364, 2020.
Article in English | MEDLINE | ID: covidwho-789696

ABSTRACT

Current literature shows that secondary bacterial infections, although less frequent than in previous influenza pandemics, affect COVID-19 patients. Mycoplasma pneumoniae, Staphylococcus aureus, Legionella pneumophila, Streptococcus pneumoniae, Haemophilus and Klebsiella spp. are the main species isolated. Of note, Mycobacterium tuberculosis-COVID-19 coinfections are also reported. However, bacterial coinfection rates increase in patients admitted in the intensive care units, and those diseases can be due to super-infections by nosocomial antibiotic-resistant bacteria. This highlights the urgency to revise frequent and empiric prescription of broad-spectrum antibiotics in COVID-19 patients, with more attention to evidence-based studies and respect for the antimicrobial stewardship principles.


Subject(s)
Bacterial Infections/epidemiology , Betacoronavirus , Coinfection/epidemiology , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Antimicrobial Stewardship , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Bacterial Infections/transmission , COVID-19 , Cross Infection/epidemiology , Cross Infection/transmission , Drug Resistance, Microbial , Early Diagnosis , Humans , Intensive Care Units , Italy/epidemiology , Mycoses/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Species Specificity , Tuberculosis/epidemiology
9.
Curr Opin Pulm Med ; 26(3): 197-202, 2020 05.
Article in English | MEDLINE | ID: covidwho-726094

ABSTRACT

PURPOSE OF REVIEW: Mass gathering events bring people from across all continents increasing the risk of spread of aerosol transmissible respiratory tract infections. Respiratory tract infections for instance in pilgrims attending the world's largest recurring annual pilgrimage, the Hajj are common. We review recent literature on viral and bacterial infectious diseases with special focus on the Hajj. RECENT FINDINGS: The prevalence of bacterial and viral infections continue to increase, because of the acquisition of rhinovirus, coronaviruses (229E, HKU1, OC43), influenza A H1N1, Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus during Hajj. Whilst MERS-CoV continues to circulate in the Middle East, no cases of MERS-CoV have yet been identified in pilgrims during Hajj. SUMMARY: Respiratory tract infections are a major cause of morbidity in pilgrims attending mass gathering events. The management of severe respiratory infections should consider investigation and empirical coverage for the most likely agents based on syndromic surveillance data from hosting country and /or other relevant exposure history during events. Pneumococcal and Pertussis vaccines should be recommended for Hajj pilgrims.


Subject(s)
Coronavirus Infections/transmission , Influenza, Human/transmission , Islam , Measles/transmission , Pneumonia, Pneumococcal/transmission , Respiratory Tract Infections/transmission , Travel , Tuberculosis/transmission , Bacterial Infections/epidemiology , Bacterial Infections/transmission , Coronavirus , Coronavirus Infections/epidemiology , Haemophilus Infections/epidemiology , Haemophilus Infections/transmission , Humans , Influenza A Virus, H1N1 Subtype , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Measles/epidemiology , Measles/prevention & control , Middle East/epidemiology , Picornaviridae Infections/epidemiology , Picornaviridae Infections/transmission , Pneumococcal Vaccines/therapeutic use , Pneumonia, Pneumococcal/epidemiology , Pneumonia, Pneumococcal/prevention & control , Prevalence , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Streptococcus pneumoniae , Tuberculosis/epidemiology , Virus Diseases/epidemiology , Virus Diseases/transmission , Whooping Cough/epidemiology , Whooping Cough/prevention & control , Whooping Cough/transmission
SELECTION OF CITATIONS
SEARCH DETAIL